A cartesian grid finite volume method for the solution of the Poisson equation with variable coefficients and embedded interfaces
نویسنده
چکیده
We present a finite volume method for the solution of the two-dimensional Poisson equation ∇· (β(x)∇u(x)) = f(x) with variable, discontinuous coefficients and solution discontinuities on irregular domains. The method uses bilinear ansatz functions on Cartesian grids for the solution u(x) resulting in a compact nine-point stencil. The resulting linear problem has been solved with a standard multigrid solver. Singularities associated with vanishing partial volumes of intersected grid cells or the dual bilinear ansatz itself are removed by a two-step asymptotic approach. The method achieves second order of accuracy in the L∞ and L2 norm.
منابع مشابه
A sharp interface finite volume method for elliptic equations on Cartesian grids
We present a second order sharp interface finite volume method for the solution of the three-dimensional elliptic equation ∇ pβp~xq∇up~xqq fp~xq with variable coefficients on Cartesian grids. In particular, we focus on interface problems with discontinuities in the coefficient, the source term, the solution, and the fluxes across the interface. The method uses standard piecewiese trilinear fini...
متن کاملAdaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation
An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...
متن کاملElectrostatic analysis of the charged surface in a solution via the finite element method: The Poisson-Boltzmann theory
Electrostatic potential as well as the local volume charge density are computed for a macromolecule by solving the Poisson-Boltzmann equation (PBE) using the finite element method (FEM). As a verification, our numerical results for a one dimensional PBE, which corresponds to an infinite-length macromolecule, are compared with the existing analytical solution and good agreement is found. As a ma...
متن کاملA second order virtual node method for elliptic problems with interfaces and irregular domains
We present a second order accurate, geometrically flexible and easy to implement method for solving the variable coefficient Poisson equation with interfacial discontinuities or on irregular domains, handling both cases with the same approach. We discretize the equations using an embedded approach on a uniform Cartesian grid employing virtual nodes at interfaces and boundaries. A variational me...
متن کاملA cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow
We present an efficient method for solving 2D incompressible viscous flows around multiple moving objects. Our method employs an underlying regular Cartesian grid to solve the system using a streamfunction–vorticity formulation and with discontinuities representing the embedded objects. The no-penentration condition for the moving geometry is satisfied by superposing a homogenous solution to th...
متن کامل